Noetherian rings of injective dimension one which are orders in quasi-Frobenius rings
نویسندگان
چکیده
منابع مشابه
Fp-injective and Weakly Quasi-frobenius Rings
The classes of FP -injective and weakly quasi-Frobenius rings are investigated. The properties for both classes of rings are closely linked with embedding of finitely presented modules in fp-flat and free modules respectively. Using these properties, we characterize the classes of coherent CF and FGF-rings. Moreover, it is proved that the group ring R(G) is FP -injective (weakly quasi-Frobenius...
متن کاملOn semiperfect rings of injective dimension one
We give a characterization of right Noetherian semiprime semiperfect and semidistributive rings with inj. dimAAA 6 1.
متن کاملOn co-Noetherian dimension of rings
We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...
متن کاملStructure of Fp-injective and Weakly Quasi-frobenius Rings
In the present paper new criteria for classes of FP -injective and weakly quasi-Frobenius rings are given. Properties of both classes of rings are closely linked with embedding of finitely presented modules in fp-flat and free modules respectively. Using these properties, we describe classes of coherent CF and FGF-rings. Moreover, it is proved that the group ring R(G) is FP -injective (resp. we...
متن کاملSuperdecomposable pure injective modules over commutative Noetherian rings
We investigate width and Krull–Gabriel dimension over commutative Noetherian rings which are “tame” according to the Klingler–Levy analysis in [4], [5] and [6], in particular over Dedekind-like rings and their homomorphic images. We show that both are undefined in most cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2003
ISSN: 0021-8693
DOI: 10.1016/s0021-8693(03)00461-7